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Ergodic Theory

M.S. Keane

1. BASIC IDEAS

Ergodic theory is a mathematical endeavour which arose from the study
of statistical mechanics by physicists in the latter half of the nineteenth
century, as an ongoing attempt to derive the macroscopic, statistical laws
of thermodynamics from deterministic microscopic behaviour. The basic
concept which is studied 1n this mathematical discipline is that of the mea-
sure preserving transformation. Thus my first task is to create an image
inside of your head, reader, of what we think of when we hear this collec-
tion of words. The most important word, transformation, indicates that
we are dealing with a change, or movement, of a collection of basic (i.e.
indistinguishable except for their names) objects, and the other two words,
measure preserving, are intended to show that the sizes of subcollections
of these objects do not change after the movement, or transformation, is
applied.

1.1. A simple example
Here is a simple example. Consider three indistinguishable objects, placed

in positions which we simply denote by a, b, and ¢ respectively. Each of

the three objects has the same size, where it is perhaps best to think of the
size of an object as its weight; we generally call this non-negative number
the measure of the object. The positions a, b, and ¢ are usually called
points. Now imagine the following movements taking place simultaneously:
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the object at point @ moves to point b, the object at point b moves to point
¢, and the object at point ¢ moves to point a. Thus we have defined a
measure preserving transformation, since after the movement each position
is occupied with an object of the same size as before. The objects, ot course,
can now disappear from our discussion, since they are only distinguished by
their positions and we can think of the measure of an object as a number
attached to. or more generally a mass distribution over, the collection ot
positions; this is a typical mathematical ploy.

1.2. The measure preserving transformation

After this simple example, we jump to the attempt at creating a general
picture in your head. A measure preserving transformation is defined as a
collection of points (i.e. a set or a space) together with a mass distribution
over this space of points, and a transformation assigning to each point of
the space another (perhaps in some instances the same) point of the space,
such that after simultaneous application of the transformation to each point
of the space, the same mass distribution is observed.

Here we perhaps need to remark that our initial example was very simple,
in that we were dealing with a finite set of points. The most interesting and
natural situations deal with much larger sets of points, such as the interval
of real numbers between 0 and 1, or more generally spaces whose ‘points’ are
themselves collections of other objects, e.g. paths of particles or positions of
sets of points. In these situations, it is more difficult to define the concept
of mass distribution, and there is an entire branch of mathematics devel-
oped around the beginning of the twentieth century, called measure theory.
which lays down the rules for mass distributions and their behaviour under
transformations. A thorough knowledge of measure theory is indispensable
for research in ergodic theory, although on an intuitive level the concept ot

mass distribution and mass transportation seems to be easily accessible to
a general audience.

1.8. A more interesting example

Let me now try to fill out the abstract picture given above with a more
interesting example, which was one of the motivations for the study of er-
godic theory at its beginning in the nineteenth century. lmagine a box filled
with a large number N of gas molecules (for example, air, or more simply,
hydrogen). At any fixed time, we can visualize the situation in the box by
writing down the exact position and velocity of each of the molecules in a
(very long) vector Z of 6N real numbers. (I have written ‘visualize’ because
of the practical impossibility of carrying out such a description; the number
N will be much too large in any reasonable situation.) Now imagine the
space X of all possible vectors & such that their energy, which is simply a
number we can calculate from the entries of the given vector & by a simple



FraODIC THEORY

formula which will not concern us further here, is a fixed nummber E. The
mass distribution we want to consider over X is the natural uniform distri-
bution with total mass one, and the movement is given by starting at time
zero 1n the configuration given by # and then calculating the positions and
velocities of each of the molecules at time one, putting them all together
in another long vector which we denote by T(F) and call the transformed
pomt. The calculations can be done according to different rules, but let us
suppose here that we are interested in the rules given by classical mechanics.
T'he measure preserving transformation thus described is commonly known
as ‘gas in a box’, and the preservation of mass was first proved by Liouville
in the middle of the nineteenth century.

2. (QUESTIONS OF INTEREST IN ERGODIC THEORY

Our next task is to describe some of the basic questions of interest in the
field of ergodic theory. From the second example it should be clear that
one of the goals is to get away from very detailed, local investigations of the
behaviour of individual molecules or points, as in this example it would be
impossible to say very much. The simplest way to formulate this restriction
1s to realize that we wish to deal with successive movements, and in partic-
ular to try to describe the long-term behaviour after many many iterations
of the measure preserving transformation. In the first example, things are
quite clear; after two movements, a 1s at ¢, b at a, and ¢ at b, and after three
movements everyone is back to his starting spot and things repeat as before.
In other words, this is a periodic transtormation with period 3. The second
example presents more difficulty, but just recently it has been shown by the
Hungarian School (for identical molecules of a fixed size and so-called elastic
collisions with each other and with the sides of the box) that except for a set
of starting points having probability zero, the positions and velocities will
come arbitrarily close to any given set of positions and velocities again and
again as the movement is iterated, after a sufficient number of movements.
Thus, with probability one, all of the molecules will eventually collect in
the right half of the box (but not stay there), if we wait long enough! This
‘inevitable suffocation’, although mathematically sound, i1s also very inter-
esting because it contradicts the second law of thermodynamics, although
it has been deduced from the first principles of classical mechanics, the only
acceptable physical principles on a microscopic level for a wide class of gas
models and densities.

After the above detour into the world of physical interpretation, we now
return to mathematics, with a discussion of some mathematical problems
and a few results obtained in the past years in The Netherlands and else-
where connected to ergodic theory. Below we treat three areas of inter-
est: percolation, one-dependent processes, and interval dynamics. We shall
try to exhibit the corresponding measure preserving transformation, but it

- [
-
. - [
QI ] - )
. '
N . il 4
k1 ) ! ! 1



92

M.S. KEANE

will not be possible to arrive at a detailed understanding of the underly-
ing connections and proofs. Most of the work discussed has been carried
out at Delft University of Technology, and substantially supported by the

NWO/SMC-grant ‘Coding Problems in Ergodic Theory’, as well as other
local and national funding.

3. PERCOLATION

3.1. Mathematical models of percolation

In mathematical models of percolation, the underlying measure preserving
transformation is not temporal, but spatial. The simplest model runs as
follows. Imagine a regular grid of interconnected pipes in three-dimensional
space, and suppose that a certain percentage of the pipes are open, allowing
liquid to flow through them, while the remaining pipes are blocked. We as-
sume that this configuration has been obtained by some random mechanism,
for instance an independent coin toss with the same coin for each pipe. The
space X 1n this situation is the collection of all (infinite) prescriptions of
which pipes are open and which are blocked, while the movement is a spatial
movement of translation in a direction parallel to some of the pipes, by the
length of one of the pipes. There are in this example actually six different
directions, so we have six measure preserving transformations, coming in
pairs which are inverses of each other. The mass distribution is described
by the random pipe blocking mechanism. The basic idea of percolation the-
ory, developed by physicists earlier but put on a sound mathematical basis
in the 1950’s, 1s that if only a small percentage of the pipes are blocked,
then there will be paths stretching to infinity along which liquid can flow.
but if the blocking percentage is large, then all of the liquid is localized and
cannot escape from a finite region. Thus there should be a critical blocking
percentage, below which these infinite open paths appear and above which
there are no infinite paths. (See also figure 1.) The basic applications of
these ideas are in the areas of oil exploration and spread of disease, and it
1s Interesting to be able to prove that critical blocking percentages (gener-
ally called critical probabilities) exist, calculate them, and more generally
describe the nature of the random picture of a realization of the process.
Both geometric and measure theoretic issues are important here.

3.2. Recent results

In the short space available, it would be impossible to detail the connection
between ergodic theory and percolation, and we must be content with the
statement that this point of view has proven very fruitful in understanding
and solving many of the open problems, and providing simple proofs of
theorems previously believed to be very complicated in nature. I list shortly
some of our results—the reader should be aware that the selection is made
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Figure 1. computer realization of site percolation on the square lattice. Red is
percolating.

to indicate the work carried out in the 1980’s in The Netherlands, and is
not a representative sample of the many interesting ideas in the field of
percolation.

e The fundamental Van den Berg-Kesten-inequality, permitting calcu-
ation of several critical probabilities, and also of basic theoretical
1mportance .

e The uniqueness of infinite clusters of open pipes and of densities
of clusters in a large range of physically feasible percolation models
:) &

i

e Continuity results for percolation probability functions ([1]).

o lLuxact calculations for critical probabilities and percolation probability
functions in circle percolation models ([5]).

e |

e Connectivity and uniqueness in Mandelbrot percolation ([5]).
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Most of these results do not directly use established methods of ergodic
theory; instead, they raise substantial new questions concerning measure
preserving transformations.

4. ONE-DEPENDENT PROCESSES

In ({6]), a long-standing conjecture concerning the existence of one-depen-
dent processes which are not two-block factors of independent processes
was settled, giving rise to a substantial collection of new one-dependent
processes. Let me try to explain the idea behind one-dependent processes.
First of all, it is easiest to think of a process as a doubly infinite sequence
of two symbols, say 0 and 1, chosen in some random manner. For instance.
suppose that for each element of the sequence we flip a coin which is labelled
0 on one side and 1 on the other (the coin need not be fair, but it should be
the same coin for every element of the sequence). This gives rise to an in-
dependent (stationary) process. A generalization of independent processes,
widely studied, is that of Markov processes, in which there are two coins,
and the one flipped depends on the outcome of the flip in the preceding el-
ement of the sequence. Markov processes have the property that the future
flips are independent of the past flips if one supposes the value of the present
flip to be known. The definition of a one-dependent process is one in which
the future is independent of the past, when no knowledge of the present is
assumed. That is, the observer sees an event in the past, goes to sleep at
the present and misses an observation, and then observes independence in
the future with respect to what he saw in the past. It is easy to see that
if we take any independent process (with perhaps more than two symbols,
even more than a finite or countable number of states), and make another
process by a function depending only on two successive observations with
values 0 and 1, then this process is one-dependent. The conjecture was that
every two-state one-dependent process arises in this manner, and ([6]) con-
tains a large number of new one-dependent processes, which cannot arise
in this manner. It is not easy to see how ergodic theory can be of help in
this problem, and the underlying transformation is difficult to describe, and
not even measure preserving. IThe methods indicate a connection to and
a generalization of quantum probabilistic reasoning, which is not yet well
understood and will certainly be the subject of further investigation.

5. INTERVAL DYNAMICS

One of the most interesting problems of ergodic theory is to establish exis-
tence of and to calculate the values of invariant measures for a given trans-
formation of a space. In particular, one-dimensional transformations (maps
of the unit interval to itself) received a large amount of attention in recent
years. Thesis [4] treats existence of invariant measures for such transforma-
tions, and provided cornerstones for a number of subsequent results.



FRGODIC THEORY

6. CLASSIFICATION

Ergodic theory provides an explanation for the apparent randomness ob-
served 1n physically deterministic models. One can attempt to determine
the different types of randomness by classifying measure preserving transfor-
mations. One of the most fruitful approaches to the classification problem
1s provided by the theory of finitary codes, developed by M. Smorodinsky
and myself in the 1970’s. At present, a thorough study of such classifica-
tion of different types of pure randomness, both in classical and quantum
descriptions, is being prepared.

7. INVARIANT MEASURES

As we have mentioned above, the problem of finding and making explicit
Invariant measures for a given transformation or transformations is central
to ergodic theory. I cannot resist closing this essay with an 1mteresting open
problem, due to H. Furstenberg. Let S and 7 be the transformations of
the unit interval defined by Sr = 2r mod 1 and T+ = 32 mod 1. Then
the normalized Lebesgue measure (uniform distribution on the unit inter-
val) is invariant under both S and 7. Does there exist another continuous
probability measure on the unit interval with this property?

8. CONCLUSION

In this short essay we have attempted to briefly describe the basic idea
underlying the mathematical discipline of ergodic theory, to give a short
description of its physical origins, and to describe summarily some aspects
of work at Delft University of Technology using ergodic theory to answer
fundamental questions inside the discipline and to contribute to problems in
related fields. The essential reason for the wide range of application is the
fundamental nature of the notion of a measure preserving transformation,
together with its surprising complexity.
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